Gerak melingkar
Gerak Melingkar adalah gerak suatu benda yang membentuk lintasan berupa lingkaran mengelilingi suatu titik tetap. Agar suatu benda dapat bergerak melingkar ia membutuhkan adanya gaya yang selalu membelokkan-nya menuju pusat lintasan lingkaran. Gaya ini dinamakan gaya sentripetal. Suatu gerak melingkar beraturan dapat dikatakan sebagai suatu gerak dipercepat beraturan, mengingat perlu adanya suatu percepatan yang besarnya tetap dengan arah yang berubah, yang selalu mengubah arah gerak benda agar menempuh lintasan berbentuk lingkaran.Besaran gerak melingkar
Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah





Gerak lurus | Gerak melingkar | ||
---|---|---|---|
Besaran | Satuan (SI) | Besaran | Satuan (SI) |
poisisi ![]() | m | sudut ![]() | rad |
kecepatan ![]() | m/s | kecepatan sudut ![]() | rad/s |
percepatan ![]() | m/s2 | percepatan sudut ![]() | rad/s2 |
- | - | perioda ![]() | s |
- | - | radius ![]() | m |
Turunan dan integral
Seperti halnya kembarannya dalam gerak linier, besaran-besaran gerak melingkar pun memiliki hubungan satu sama lain melalui proses integrasi dan diferensiasi.Hubungan antar besaran sudut dan tangensial
Antara besaran gerak linier dan melingkar terdapat suatu hubungan melalui

Jenis gerak melingkar
Gerak melingkar dapat dibedakan menjadi dua jenis, atas keseragaman kecepatan sudutnya
- gerak melingkar beraturan, dan
- gerak melingkar berubah beraturan.
Gerak melingkar beraturan
Gerak Melingkar Beraturan (GMB) adalah gerak melingkar dengan besar kecepatan sudut













Gerak melingkar berubah beraturan
Gerak Melingkar Berubah Beraturan (GMBB) adalah gerak melingkar dengan percepatan sudut




Persamaan parametrik
Gerak melingkar dapat pula dinyatakan dalam persamaan parametrik dengan terlebih dahulu mendefinisikan:- titik awal gerakan dilakukan
- kecepatan sudut putaran
(yang berarti suatu GMB)
- pusat lingkaran
Hal pertama yang harus dilakukan adalah menghitung jari-jari lintasan






Hubungan antar besaran linier dan angular
Dengan menggunakan persamaan parametrik, telah dibatasi bahwa besaran linier yang digunakan hanyalah besaran tangensial atau hanya komponen vektor pada arah angular, yang berarti tidak ada komponen vektor dalam arah radial. Dengan batasan ini hubungan antara besaran linier (tangensial) dan angular dapat dengan mudah diturunkan.Kecepatan tangensial dan kecepatan sudut
Kecepatan linier total dapat diperoleh melaluiPercepatan tangensial dan kecepatan sudut
Dengan cara yang sama dengan sebelumnya, percepatan linier total dapat diperoleh melaluiKecepatan sudut tidak tetap
Persamaan parametric dapat pula digunakan apabila gerak melingkar merupakan GMBB, atau bukan lagi GMB dengan terdapatnya kecepatan sudut yang berubah beraturan (atau adanya percepatan sudut). Langkah-langkah yang sama dapat dilakukan, akan tetapi perlu diingat bahwa

Persamaan parametrik di atas, dapat dituliskan dalam bentuk yang lebih umum, yaitu:




Kecepatan sudut
Dengan menggunakan aturan rantai dalam melakukan diferensiasi posisi dari persamaan parametrik terhadap waktu diperolehPercepatan total
Diferensiasi lebih lanjut terhadap waktu pada kecepatan linier memberikanGerak berubah beraturan
Gerak melingkar dapat dipandang sebagai gerak berubah beraturan. Bedakan dengan gerak lurus berubah beraturan (GLBB). Konsep kecepatan yang berubah kadang hanya dipahami dalam perubahan besarnya, dalam gerak melingkar beraturan (GMB) besarnya kecepatan adalah tetap, akan tetapi arahnya yang berubah dengan beraturan, bandingkan dengan GLBB yang arahnya tetap akan tetapi besarnya kecepatan yang berubah beraturan.Kecepatan | GLBB | GMB |
---|---|---|
Besar | berubah | tetap |
Arah | tetap | berubah |